Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Biomol Struct Dyn ; : 1-12, 2021 Sep 08.
Article in English | MEDLINE | ID: covidwho-2264134

ABSTRACT

Covid-19 is a viral disease caused by the virus SARS-CoV-2 that spread worldwide and caused more than 4.3 million deaths. Moreover, SARS-CoV-2 still continues to evolve, and specifically the E484K, N501Y, and South Africa triple (K417N + E484K + N501Y) spike protein mutants remain as the 'escape' phenotypes. The aim of this study was to compare the interaction between the receptor binding domain (RBD) of the E484K, N501Y and South Africa triple spike variants and ACE2 with the interaction between wild-type spike RBD-ACE2 and to show whether the obtained binding affinities and conformations corraborate clinical findings. The structures of the RBDs of the E484K, N501Y and South Africa triple variants were generated with DS Studio v16 and energetically minimized using the CHARMM22 force field. Protein-protein dockings were performed in the HADDOCK server and the obtained wild-type and mutant spike-ACE2 complexes were submitted to 200-ns molecular dynamics simulations with subsequent free energy calculations using GROMACS. Based on docking binding affinities and free energy calculations the E484K, N501Y and triple mutant variants were found to interact stronger with the ACE2 than the wild-type spike. Interestingly, molecular dynamics and MM-PBSA results showed that E484K and spike triple mutant complexes were more stable than the N501Y one. Moreover, the E484K and South Africa triple mutants triggered greater conformational changes in the spike glycoprotein than N501Y. The E484K variant alone, or the combination of K417N + E484K + N501Y mutations induce significant conformational transitions in the spike glycoprotein, while increasing the spike-ACE2 binding affinity.Communicated by Ramaswamy H. Sarma.

2.
Turk J Biol ; 45(4): 484-502, 2021.
Article in English | MEDLINE | ID: covidwho-1403913

ABSTRACT

The novel coronavirus (COVID-19, SARS-CoV-2) is a rapidly spreading disease with a high mortality. In this research, the interactions between specific flavonols and the 2019-nCoV receptor binding domain (RBD), transmembrane protease, serine 2 (TMPRSS2), and cathepsins (CatB and CatL) were analyzed. According to the relative binding capacity index (RBCI) calculated based on the free energy of binding and calculated inhibition constants, it was determined that robinin (ROB) and gossypetin (GOS) were the most effective flavonols on all targets. While the binding free energy of ROB with the spike glycoprotein RBD, TMPRSS2, CatB, and CatL were -5.02, -7.57, -10.10, and -6.11 kcal/mol, the values for GOS were -4.67, -5.24, -8.31, and -6.76, respectively. Furthermore, both compounds maintained their stability for at least 170 ns on respective targets in molecular dynamics simulations. The molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) calculations also corroborated these data. Considering Lipinski's rule of five, ROB and GOS exhibited 3 (MW>500, N or O>10, NH or OH>5), and 1 (NH or OH>5) violations, respectively. Neither ROB nor GOS showed AMES toxicity or hepatotoxicity. The LD50 of these compounds in rats were 2.482 and 2.527 mol/kg, respectively. Therefore, we conclude that these compounds could be considered as alternative therapeutic agents in the treatment of COVID-19. However, the possible inhibitory effects of these compounds on cytochromes (CYPs) should be verified by in vitro or in vivo tests and their adverse effects on cellular energy metabolism should be minimized by performing molecular modifications if necessary.

3.
J Biomol Struct Dyn ; 40(6): 2460-2474, 2022 04.
Article in English | MEDLINE | ID: covidwho-894481

ABSTRACT

Coronavirus Disease 2019 (COVID-19) has infected more than thirty five million people worldwide and caused nearly 1 million deaths as of October 2020. The microorganism causing COVID-19 was named as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2 or 2019-nCoV). The aim of this study was to investigate the interactions of twenty-three phytochemicals belonging to different flavonoid subgroups with the receptor binding domain (RBD) of the spike glycoprotein of 2019-nCoV, and cellular proteases [transmembrane serine protease 2 (TMPRSS2), cathepsin B and L (CatB/L)]. The compounds interacted more strongly with CatB and CatL than with the other proteins. Van der Waals and hydrogen bonds played an important role in the receptor-ligand interactions. As a result of RBCI (relative binding capacity index) analysis conducted to rank flavonoids in terms of their interactions with the target proteins, (-)-epicatechin gallate interacted strongly with all the proteins studied. The results obtained from molecular dynamics and molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) methods also supported this data. According to Lipinski's rule of five, (-)-epicatechin gallate showed drug-likeness properties. Although this molecule is not capable of crossing the blood-brain barrier (BBB), it was concluded that (-)-epicatechin gallate can be evaluated as a candidate molecule in drug development studies against 2019-nCoV since it was not the substrate of P-gp (P-glycoprotein), did not inhibit any of the cytochrome Ps, and did not show AMES toxicity or hepatotoxicity on eukaryotic cells.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Flavonoids/pharmacology , Humans , Molecular Docking Simulation , Peptide Hydrolases
4.
Turk J Biol ; 44(3): 242-264, 2020.
Article in English | MEDLINE | ID: covidwho-619652

ABSTRACT

As of June 2020, the coronavirus disease 19 (COVID-19) caused by the 2019 new type coronavirus (2019-nCoV) infected more than 7,000,000 people worldwide and caused the death of more than 400,000 people. The aim of this study was to investigate the molecular interactions between monoterpenoids and spike protein of 2019-nCoV together with the cellular proteases [transmembrane serine protease 2 (TMPRSS2), cathepsin B (CatB), and cathepsin L (CatL)]. As a result of the relative binding capacity index (RBCI) analysis, carvone was found to be the most effective molecule against all targets when binding energy and predicted (theoretical) IC50 data were evaluated together. It was found to exhibit drug-likeness property according to the Lipinski's rule-of-five. Carvone has also been determined to be able to cross the blood-brain barrier (BBB) effectively, not a substrate for P-glycoprotein (P-gp), not to inhibit any of the cytochrome P molecules, and to have no toxic effects even on liver cells. In addition, the LD50 dose of carvone in rats was 1.707 mol/kg. Due to its interaction profile with target proteins and excellent pharmacokinetic properties, it has been concluded that carvone can be considered as an alternative agent in drug development studies against 2019-nCoV.

SELECTION OF CITATIONS
SEARCH DETAIL